A glimpse of optical fiber modes with COMSOL Multiphysics

Course of Photonics Devices October 14th, 2013

Enrico Coscelli enrico.coscelli@unipr.it 0521 (90)5766

- Modes of an optical fiber
- Finite-Element Method(FEM)
- Modal analysis
- Comsol Multiphysics 4.3
- Hands On

Propagation in a step-index fiber

[A little warm-up...]

Simplified model!

- Formal description: Maxwell's equations, boundary conditions...
- Guided modes: solution of Maxwell's equations with certain properties (like being guided...)

- Total internal reflection
- Acceptance angle θ_a
- Allowed rays: modes
- Attenuation, dispersion...

1. cTax-2

 Straight waveguides (metallic or dielectric) are solved with Hp of cylindrical structure

Modes of a step-index fiber

- Optical fibers supports a discrete set of guided modes
- The number of guided modes at a given wavelength is determined by the core radius and by the index contrast between core and cladding

Norm. frequency (V-number):

$$V = \frac{2\pi}{\lambda} a \sqrt{n_1^2 - n_2^2}$$

- Modes are guided at V > V_c, i.e. $\lambda < \lambda_c$
- λ_c is the **cut-off wavelength** of the mode

- $V_c \ e \ \lambda_c$ can be calculated analytically in **step-index** fibers

Field distribution

Fundamental mode V_c = 0

 $V_{c} = 2.405$

 $n_{e\!f\!f}$ $\frac{1}{k_0}$

 2π

How to find the modes?

- Solution of Maxwell's eqns. in the waveguide
 - PDE: Partial Differential Equation problem
 - Analytic solution exists only for "simple" structures (i.e.: azimuthally-invariant...)

- And otherwise??
 - Approximate solutions
 - Numerical methods

Finite-Element Method (FEM)

Finite-element method

Modal analysis with FEM solver

MODELING

definition of physical and geometric properties

mesh creation

SOLUTION AND POST-PROCESSING

HANDS ON!

 $n_{co} = 1.45$

 $n_{co} = 1.45$

 $n_{co} = 1.45$ a = 4.5 µm